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Enantioselective routes to optically active amines provide valu-
able synthetic building blocksThe enantioselective preparation
of chiral tertiary amines is particularly important because they

O\ ,O

cannot be generated directly by enantioselective hydrogenation of
imines23 and the enantioselective hydrogenation of enamines
remains a challengeln addition, methods for enantioselective

coupling of two fragments by €N bond-formation are limite&8 Ha RcRo)-6 (H) 8 (H3 . Pr)
We recently reported catalysts for enantioselective hydroaminations o o
to form allylic and benzylic amine%’ Becausey3-z-benzyl and ~ Figure 1. Phosphoramidite ligands used in this study.
-allyl _complexes are int_ernjediates in both our hydrqamination Scheme 1
chemistry and allylic amination, we sought to develop, in parallel, [(COD)IrCl]

. . - oo g 7 NR'R?
catalysts for enantioselective allylic substitution.  RTY0co,Me + RIRANH 0O)2PNR" P

During these studies we took notice of chiral phosphoramidites 1 2 R
6—8, designed by Feringa and co-workers (Figuré®)Their 3 major
m-accepting property should be favorable for nucleophilic attack + R/\/\NR1R2+(R/\/>;NR1
on allyl or b.e.nzyl groups. Inde.ed., their complexes with pa!ladi.um 4 minor 5 (if R%=H)
showed activity during our preliminary studies on hydroamination, R = ph (1a) Benzylamine (2a)
and as reported here, complexes with iridium show high activity E_ 3 'Rlﬂgogeﬁ‘; (11 b) 4-Methfxypen2%llamlne (2b)
and selectivity for enantioselective substitution®y-¢cinnamyl and R-o. MeéCZH‘;((%) Zhyf;,).'n?r:g'?;é) °)
terminal aliphatic allylic carbonates. These allylic aminations are R = 2-furyl (1e) Pyrrolidine (2e)
conducted with air-stable catalyst components at ambient temper- 7 = 7CsH7 (11) ,f’/l'gf”r?'”.e (20)
AN pholine (2g)

atures. Ph OAc (1g) Diethylamine (2h)

Allyic substitution of acyclic allylic electrophiles catalyzed by
W,ll |\/|0712v13Ru‘14v15|r716 and RH7V1800mp|exes often generate the regioselectivity 3/4 = 99/1) afte 1 h atroom temperature but
chiral branched substitution products. Enantioselective amination produced lower ratios 08/4 (3/4 = 67/33 after 12 h and 23/77
of symmetrical 1,3-diphenylallyl carbonatés? and unsymmetrical  after 24 h) and the more stableas the major producB(4 = 10/
branched allylic acetaté$,along with a single example of pal-  90) after 60 h.
ladium-catalyzed asymmetric amination of a terminal allylic ester ~ Solvent influenced the reactivity, regioselectivity, and enanti-
or carbonaté® have been reported.However, a general, enanti-  0selectivity for the reaction of 1:21.3 equiv of benzylamine2@)
oselective allylic amination from an achiral, terminal allylic with la The reactivity at room temperature followed the order
electrophile has not been accomplished. Takélahid Evan® DMF, EtOH (100% conversion after-22 h) > MeOH, THF, Ch-
have shown that iridium and rhodium complexes of achiral CN (8—10 h)> CH3;NO,, DME (20—24 h) > CH.Cl,, NEt; (48 h)
phosphites catalyze the formation of branched amines, in some cases 1,4-dioxane, BO, toluene (reactions were incomplete after 72
with conservation of enantioselectiviyHelmchen reported enan-  h). Reactions in each solvent, except Na&itd CHNO,, occurred
tioselective alkylation of branched allylic acetates with modest®e’s  With high regioselectivity §/4/5 = 98—-94/1-4/0—3) when 1.2-
in the presence of an iridiurphosphoramidite catalyst. Analogous 1.3 equiv of amine was used. The enantioselectivity of reactions
enantioselective aminations occurred with ee’s below 15%. Iridium in different solvents followed the order THF B (95% ee), DME
complexes that may be related to the amination chemistry were (94% ee€)> toluene, 1,4-dioxane, Gil, (92-90% ee)> NEt;
isolated3® (86% ee)> DMF, EtOH, CHCN (80—77% ee)> CH3;NO, (65%

In contrast, we have found that iridium complexes of phosphora- €e)> MeOH (52% ee). Reactions in the polar solvents DMF, EtOH,
midite (Ra,Rc,Rc)-6 in Figure 1 catalyze allylic amination with high ~ and MeOH were fast, but low ee’s were observed. Reactions in
activity to form branched produ@ with high enantioselectivity THF displayed the most suitable balance of rate and enantioselec-
(Scheme 1). Regioselective formation3fequired control of the tivity.
reaction conditions. In EtOH, the phosphoramidite complex cata-  The effect of ligand and temperature on selectivity is summarized

lyzed allylic transposition of the amino group in prodgctin the in Table 1. The reaction proceeded smoothly at room temperature
presence of [Ir(cod)C] (1 mol %) and Rs,Rc,Rc)-6 (2 mol %, in the presence of [Ir(cod)Gl(1 mol %) and Ra,Rc,Rc)-6 (2 mol
L/Ir = 1), the reaction of cinnamyl methyl carbonats) with %, L/Ir = 1) to give after 10 h branche@ with excellent

morpholine 2g, 3.0 equiv) gave complete conversion and excellent regioselectivity §/4/5 = 98/1/1) and 84% isolated yield of product
with 95% enantiomeric excess (entry 1). Reaction atG@or 4 h

* Corresponding author. E-mail: john.hartwig@yale.edu. gave 89% of3 with 94% ee (entry 2). Reactions catalyzed by
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Table 1. Ligand and Temperature Effects for Ir-Catalyzed (entry 13) or neat (entry 14) with 3.0 equiv of amine to form the
Enantioselective Allylic Amination of 1a with 2a allylic amine in good yield and with excellent enantioselectivity.
yield of Two terminal carbonates reacted less selectiyeNitrocinnamyl
entry ligand temp  time () 3/4/5° 3(RF e 1cwas only slightly soluble in THF and gave lower regioselectivity
1 (RaRc,R0)-6 1t 10 98/1/1 84 95R) and enantioselectivity (86% ee, entry ®Methoxy-substituted
2 (RaRcRo-6  50°C 4 98/2/0 89 94R) cinnamy! carbonatéd reacted with high regioselectivity, but the
3 (SWRcRy)-6  50°C 72 93/6/1 66 759 . )
4 R7 50°C 72 41/43/16 11 0 braqched product formed with only 76% ee (entry 10). Branched
5 (R)-8 50°C 72 72/23/5 25 61R) allylic carbonates have, thus far, reacted to give low ee’s of
6  RRI rt 48 96/212 72 8TR) branched allylic amine after full conversion.
aThe reaction was conducted with 1 mmolifand 1.2-1.3 mmol of b In cr(])n((j:lusmn, we deYeIr?pgd a newdcatalytlc proces"s }O produce
2ain THF (0.5 mL) in the presence of 0.01 mmol of [Ir(cod)Cdind 0.02 branched aromatic or aliphatic secondary or tertiary allylic amines
mmol of phosphoramidite unless otherwise nofedetermined byH NMR in high yield with excellent enantioselectivity from achiral allylic

spectroscopy of crude reaction mixturéssolated yield after silica gel  gctetates and carbonates. The terminal olefin in the product can be
chromatography? Determined by HPLC with a Daicel Chiralcel OD-H

column and hexane/2-PrOHARIH (99.74/0.25/0.01) as eluent. used to.generate, for ex.ample., 1,3-amino _al(_:Oho'S’ 1,3-d|§m|nes,
and various types of amino acids. Mechanistic understanding and
Table 2. Enantioselective Allylic Amination Catalyzed by further evaluation of substrate scope will comprise future studies.

Ir—(Ra,Rc,Rc)-62
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The reaction also occurred with cinnamyl acetatgin ethanol JA028614M
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